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Abstract 

In this paper, a common calorimeter calibration scheme is explored 
and a hidden bias found. Since this bias mimics a non-linearity in 
response in the calorimeter, it must be understood and removed from 
the calibration before true non-linearities are investigated. The effect 
and its removal are explored and understood through straightforward 
calculus and algebra. 
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Introduction 

In the language of a modern high energy physics experiment, a calorimeter is 
a device that measures energy. Most often, a calorimeter consists of a passive 
absorber (often a high 2 material, used to initiate and propagate showers) 
and an active material, where at least a portion of the secondary particles’ 
energies are sampled. This energy can be transferred to the medium by 
a number of techniques (ionization, Cerenkov light, etc. ) and the energy 
is collected and turned into an electrical pulse. Typically, the charge in 
the pulse is digitized via an ADC and the resultant number is nominally 
proportional to the energy sampled and therefore the initial particle’s energy. 

Unfortunately, a realistic calorimeter does not have a delta function re- 
sponse. For many reasons, given a monochrome energy beam input, the 
signals from a calorimeter invariably follow a distribution, often a gaussian, 
with a characteristic width. This width complicates calibration, for it is not 
possible to make a simple one-to-one mapping between signal and energy. 
People are forced to assign the mean or median signal to correspond to the 
true energy (see figure (l).) In the event of an asymmetric distribution, the 
mode might be used. Typically the distribution of signals is basically, if not 
rigorously, symmetric, so the mean, median, and mode are nearly the same. 
The process is further complicated by the fact that most real calorimeters are 
segmented and each segment contains only a portion of the incident energy. 
For reasons of practicality, the various segments typically do not have per- 
fectly uniform response, so the calibration factor of each segment is unique 
and must be determined individually. 

A common method [l-9] for determining the constants is given below. 
Assume that there are i segments, each with signal ~1,. . . , Zi and a response 
function R with j independent calibration constants al,. . . , aj. The true en- 
ergy is a monochrome E and N measurements are made. Then, approaching 
the problem in the manner of least squares fitting: 

x2 = k $J(R(z~,L,. . . , +i,kralv.. . , aj) - E)* 
kl 

2x? The j derivatives a~, , . . . , g are set to zero and the resultant system of 
equations are solved to deter’mine the a 1, . . , aj’s, thus revealing the mini- . 
mum x2. The intent is to make <R > = E and to minimize the width of 
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the response distribution. It should be noted that x2 does not follow the 
standard statistical definition. It is simply a function to be minimized and 
it contains some of the structure of the ‘standard’ x2. When the response is 
linear, then i = j and the equation becomes 

x+& alzl,k + %xZ,k + . . . + ajzi,k - E)2 
-’ k=l 

and the same approach is taken. 
For purposes of illustration, the case i = 1 is investigated in detail. An 

explanation of why this is not as restrictive as it seems is given later in this 
paper. First one notes the relevant equation 

1 N 
X2= ,x(a+li-E)* 

k=l 

and the following definitions, (Z is the mean z, and r is the RMS of the 
distribution of z) 

z=- 
iiiZk 

62 = jlN&.‘.-~)2=$Z-(?.)2 
k=l 

Finding the amin that minimizes x2 

ax2 
aa = 0 = 2; &mk - E)Zk k=1 

and so 

amin = 
(C&N 

manipulating equation (2), (C,“,, 22)/N = oz + z2, 

(2) 

The intended result is a expected = E/Z, and so the ratio of minimized 
constant to expected constant is 

%nin = 2 

‘expected 
F2+f2 i1 
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Implications 

Ignoring the effects of equation (4) could have visible consequences, especially 
at low energies. Recall that the ratio of a’s in equation (4) was expected to 
be one. Since it is not, the (r dependence (and therefore energy dependence) 
appears as a non-linearity. For instance, taking a typical hadronic calorimeter 
resolution u/E - 70%/e + r(E) - 70%@, one finds 

axnin(E) E2 E 

aexpected = E2 + 0.49E = E + 0.49 

and so 

E(measured) = 
E(real) 

E(real) + 0.49 
E(rea1) 

When the minimization scheme is applied for several energies in order to 
calibrate a detector, one could be fooled into viewing this behavior as a non- 
linearity, when in fact it is a bias in the calibration scheme. This effect must 
be removed before ‘true’ non-linearities are investigated. 

Correcting for this effect is quite easy. Equation (4) is solved for CZexpectedr 
a,in is returned from the minimization procedure, as is z and r~ of the 
minimized signal distribution. Note that scaling 5 and D by a constant 
((5,~) --t (a~,ao)) does not affect equation (4), so the mean and RMS can 
be used from the ‘expected’ distribution, the ‘minimized’ distribution, or any 
distribution as long as the dimension of the abscissa is simply scaled linearly. 

As a final note, equation (1) appears to be a very special case. In fact, it 
is more general than it appears. The a factor is a global scale that affects all 
calibration constants. One could write the general linear case in the following 

x2 = ; ha1”l.k + azZ@ + . . + a;~+) - El2 
k=, 

Since in equation (1) there is no restriction on what the specific zk’s are, one 
may define Xh = alzl,k+az+z,k+. . .+aiz+, independent of any details of the 
individual al,. . . , ai’s. Then the structure of equation (1) is preserved and 
the results follows. Further, since the various segments enter symmetrically, 
this effect affects all segments equally. 
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As a demonstration of this, a simple Monte Carlo was written. A two 
segment calorimeter with resolution (v/E)' = (7O%/fi)'+(5%)' was mod- 
elled. For a monochrome energy beam, a signal (z) was randomly selected 
from a gaussian distribution with this r and a: = E. The fraction of signal 
found in segment one (zl) was chosen from a uniform probability distribution 
function for each event, the signal in segment two (~2) was simply z - zl. 

Response factors (effectively ADC to energy conversion factors) ayal and 
red 

a2 were randomly chosen at the beginning of each run and held constant. 

The energy signals were converted to ADC signals (e.g. [ = z/Pal) and 
the following x2 function constructed 

1 N 
X2 = z ~(a& + a&t -E)* 

k=l 

and the minimum al and a~ were found. The minima were found both 
by using the CERN minimization package MINUIT [lo] and by setting 

E = $$ = 0 and solving analytically for ajum and apin. Both meth- 
ods gave’identical results to within the accuracy of the computer. This 
procedure was repeated 100 times each at particular (E, a:"", ayal)‘s. The 

distribution amin/areal were made and the mean and shape of the distri- 

bution were identical for both segments. Figure (2) plots < amin/areal > 
for a number of energies, along with an overlay of the results of equation 
(4). The agreement is excellent and it underscores the fact that this ef- 
fect affects the overall energy scale and not the relative calibration (i.e. 
< ,min 1 /g=i=> = c.yJ/a;e=J >.) When the segment sharing was changed 
such that segment 1 contained a fraction of the energy chosen uniformly be- 
tween 0.5 and 1.0 (and segment 2 correspondingly between 0.0 and 0.5,) the 
means of the distributions remained the same, although the RMS of the low 
fraction segment was wider. This additional width is caused by the fact that 
the constants associated with small signals are not as well determined and 
are more likely to be affected by statistical fluctuations. 

It should be stressed that the results of equation (4) are quite sensitive to 
the size of the 0. As a demonstration of this, the reader should remember that 
for a fractional resolution u/E = 70%/a, the algorithmic shift was 5% for 
10 GeV. Using even a typical electromagnetic resolution (30%/a), one finds 
the algorithmic shift at the same energy is much reduced (approximately l%.) 
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Further, for higher energies, the fractional resolution is much improved, and 
the algorithmic effect is therefore less pronounced. In many of the references 
[l-8] this is the case. 

In addition, the reader should be aware that there are other techniques 
for calibrating that look very similar, but have qualitatively different biases. 
For instance, reference [ll] uses a minimization scheme that, when written 
in a form similar to equation (l), looks like 

x2 = ; fl: (a-Ev 
k=l 

When the earlier approach is applied to this x2, one finds that the ratio 

aminlaexpected = &4(1/N) CF=‘=,(l/z) = m. This bias yields 
amin’s that are larger than a expected, with a magnitude that increases with 
increasing resolution. 

Conclusion 

An algorithmic bias has been explored in a common calorimeter calibration 
scheme. The effect is significant, especially at lower energies for hadronic 
calorimeters. The cause of the effect has been determined and is shown to 
be purely mathematical, rather than physics motivated. The bias may be 
removed from a calibration in a simple way. 
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Figure Captions 

1. Figure 1. Shown is a distribution of signals that correspond to a 
monochrome input energy E. In order to get the mean of the dis- 
tribution % equal to the energy, each time the signal is sampled, it 
should be multiplied by the factor a expected = Elz. 

2. Figure 2. Shown is the results of a Monte Carlo study of equation (1) 
with comparison to equation (4). The solid circles show the Monte 
Carlo data (the errors are substantially smaller than the circles.) The 
line is the curve given by equation (4.) The u’s chosen for the Monte 
Carlo followed the equation: ((r/E)* = (70%/G)* + (5%)*. The 
bottom plot gives results purely in terms of calorimeter resolution, while 
the top plot shows the size of the effect at various energies for a ‘typical’ 
hadronic calorimeter. 
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Algorithmic Response Shifts 

(o(E)/Iz)~ = (i+oz/dq2 + (5@ 
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(Figure 2) 


